Assessment of Therapeutic Equivalence of Three Proportions
Using a Bayesian Approach
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Abstract: Nonrgjection of the null hypothesis when comparing two response rates in a clinical trial does not
necessarily imply that the two treatments are equivalent with respect to their therapeutic effectiveness. Recently,
researchers have invested much time and effort in describing situations in which therapeutic equivalence (TE)
may be achieved. These have involved direct hypothesis testing procedures and confidence interval techniques.
The latter involves determining if such an interval lies within predefined equivalent regions. The focus is to
determine if three freatments are equivalent with respect to their therapeutic effectiveness. The prior involves the
natural conjugate beta family of distributions. The primary parameter of interest is the ratio of the two binomial
parameters.  Limiting values of the hyperparameters of the comjugate family are used to demonstrate the
robusiness of the outcomes. Several equivalence regions are utilized to test whether or not eguivalence has been
achieved and under what conditions the attainment of equivalence may not be established. For foundation
purposes, two proportions are discussed. An extension is given to three proportions. An illustrative example is
provided.
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1. INTRODUCTION
Appropriate  statistical methodologies have been

Most phase III studies are designed with several
endpoints in mind. One of these endpointg is the rate
or proportien. In a clinical trial, interest sometimes
focuses on the guestion of which therapy produces
the highest proportion of successes or responses.
Response can be defined according to the criteria
given in a freatment protocol. Proportions are used
to depict the percentage of patients in a given trial or
on a particular f{reatment who have certain

characieristics.

Although there are numerous techniques based on
classical giatistical approaches, it i worth
mentioning that the Bayesian approach has come to
the forefront in the literature,
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developed for deriving the expression for the
posterior  distribution of the difference of two
propertions {Pham-Gia and Turkkan, 1993}

2, THE POSTERIOR DENSITY FOR TWO
PROPORTIONS

Methodology and notation are developed in order to
fulfill the research objectives. The development
begins with the comparison of two proportions, p
and p;. We are interested in testing

Hon< 10 {1
versus the alternative
He b-B<q<i+8 {2)

where, 11 = pyy pand 8 =0.2.
First, let p; represent the proportions, where



i= 1,2, The prior density is given by
i a-i A-1
alp, )= ——p. )" - p) 3
Ala. B)
where, >0, >0, and0sp=s L
Furthermore, the likelihood function is given by

Hp)=p"Q0-p)"™ 4

where, i= 1, 2 and v; is the number of successes in
nit‘n'als.

To derive the density of the ratio of proportion 1 and
proportion 2, we first obtain the joint prior density

and joint likelihood functions. Assuming inde-
pendence the joint prior is as follows:

p)= i ﬁ)w‘( -af" e ﬂ)(p)“‘( -p) (s

:@]@r*ﬂ-ﬂmﬂw

In sddition, the joird likehihood

)= p" Q- p )7 p, -, 7" (6

The transformation is as follows. Let

P
7?12""'1“ & =D,
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and

Hem)=(me) G-me )y ey =g

Sg, the posterior density 13

gy ey temsr oty gy as

p(r,i ¥ dax‘a)

Hence, the posterior density of the ratio of two
proportions is given by

Jalem¥en g

{7 elen tem, dedm

where, g(&m) denotes the joint prior density
function, Em) dencies the joint likelihood
function, W= pi/py, and E= pa,

(J'] Ea‘ata)

3, THE CONFIDENCE REGION FORTWO
PROPORTIONS

A basic problem when assessing equivalence is
specification of an acceptable difference. The FDA
Guidelines specified 20 percent for comparative
bioavailability studies. In other circumstznces, such
a specified Hmit may not be as clear-cut. I we let
p(&) represent the p-valuc associated with an
eguivalence test using limits £ A {or p(C} for limits
+ C], we can then examine 2 plot of p{ A) against A
or {(C) against C. The results of the confidence
regions in Table 1 are for various values of « and 5.
These calculations were done using MathCad® B,
MathCad® is a standard calculation software by
MathSoft®, Inc.

The ratio within Table 2 was evaluated using several
combinations of o and B. For justificaticn of these
values, see Birch and Bartolucci [1983]. For the
purpose of discussion, a few combinations of o and
8 are as follows:

ﬁ(g(a T e B

7



Table 1. Confidence Regions for Ratio of Two
Proportions (o= 1)

Prior Parameters

a B Lower endpeint Upper endpoint
2 3 1.048 1972
302 1.019 1941
2 2 1.045 1,969

For these calculations, py is the proportion of CHOP
{cytoxan, adriamycin, vincristine, and prednisone)
and p, is the proportion of BCOP {(BCNU, cytoxan,
vincristine, and prednisone), where CHOP and
BCOP are two treatments being compared in diffuse
histiocytic  non-FHodgkin’s Iymphoma in a
Cooperative Cancer Study Group protocol.

At the given {o=1} level, we observe that both of
the comfidence endpoints are not withic the
equivalence region of (441, 1.558), which was
calculated using the formula (1-2/p;, 1+.2/p2),
derived from the relationship, pi- pr < 0.20 [Hauck
and Anderson, 1986], where p, = 19/53. Al
information needed to obtain the endpoiuts of the
equivalence regions are derived from the density
given by equation (8).

Table 2. Bayes™ Estimates.

a p 2
5
2 3 151
3 2 1.48
2 4 151
2 2 1.51

4, THE POSTERIOE DENSITY FOR THREL
PROPORTIONS AND THE INTEGRATION
METHOD

Applications having muliiplicities are among the
most  difficuities  faced by  researchers.
Ugnfortunately, this happens frequently in Bayesian
analysis. Multiple comparisons often  invoke
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analytically intractable solutions. Oftentimes,
integrands do not behave well in certain regions.

One must pursue numerical methods of integration
when the nultiple integration is nontractable.

The analyst uses the numerical methods of multiple
integration to change the integrand such that itis
computable within the range of interest.

Even though there are several problems that may
occur when computing multiplicities, ong must
remember that the overall most important task of the
Bayesian analyst is to complete the statistical
inference process. Determining the posterior density
for the three proportions presents many challenges.
The formula for the posterior is as follows:

{ g€, momitEn, m.)dE
&LE . M E . 1y M Ed iy,

8

Pl m|data) =
R

where,
Vi 2

7]’1=_!_ 7?1““”]" SR
Py £

The numerator was calculated directly. On the other
hand, the denominator had to be integrated using a
change of variables. Let

Py B

= Ty = — E=p
Py Py

then
5 I

P = P =2
™ T2

The absolute value of the Jacobian is

P A

558 g
| & o7 g
SE o1

The prior is #{p,)= _}3(—15_)5 P (1-p ¥ and
a,

the likelihood function is

Wp)=p/ (0-p)"7



where i=1,2, 3 and y; is the pumber of successes in
n; irials for the ith proportion.

The joint prior is as follows:

\:

51 -
)] e )8
RN N E kgﬂ‘ﬁ)j oy

et L e
(g'f’"(ba""[i} (bi} {1] {17 e
wrow ) Wk, i

The joint likelihood function is as follows:

N, =y

)= @) U= {EJ (1 £ 'ti | {1 _iJ
h ™ iy i

A separate procedure was done to obtain M>=py/pa.
This procedure yielded P{nsldata). To find the
density af 13=ps/pe , we let

T:iq—1 X=n,
uh
then 7 =TX

The absolute value of the Jacobian is;

e

Assuming 1); and 1, are independent, the following
expiession is obtained:

derajin, | plop, i, )datalen,

=

f(ms?h)‘:fﬁ(??;ﬂh

and substitution is used for deniving the expression
for f{T,X). Henee,

FI)= 1@ X

5 NUMERICAL EXAMPLE FOR TWO
PROPORTIONS
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Hayward ot sl [1977] give weli-defined response
criteria for metastatic breast cancer CHOP
{cytoxan, adriamycin, vincristine, and prednisone)
was compared to BCOP (BCNU, cytoxan,
vincristing, and prednisone} in diffuse histiocytic
non-Hodgkin’s lymphoma in 3 Cancer Smdy Group
protocol.

There were 53 paticnis randomized and evaluated on
BCOP and 5% patienis mandomized and evaloated on
{HOP. The complete responses were considered
There were 19 complete responses (CR) on BCOP
and 33 CR on CHOP, Using Bayes’ estimaies we
can get the confidence regions for the ratio of two
proportions. The prior parametersarece=2and § =
3. Using these prior parameters, a confidence
region of {1.048, 1.972} is obtained by plugging in
the actial data into the derived confidence region
formuia. Related work in this area has been done by
Birch and Bartolucci [1983}, Bartolucoi and Singh
{1993} and Singh {1996]. It is obvious that at the
(o= 1) level, we can see that both of the confidence
endpoints are not within the equivalence region of
{441, 1,558}, Based on the specified width, 0.20, of
the region from the Food and Drug Admimstration,
it is concluded that a necessary condition for
erquivalence has not been obtained.

6, NUMERICAL EXAMPLE FOR THREE
PROPORTIONS

Patients were randomized to one of three freatments
in an advanced non-small-cell carcinoma of the lung
trial.  Patients were appropriately stratified.  The
treatments  were as follows:  (a) CAMF
{cyclophosphamide, adriamycin, methotrexate with
folinic acid, (b) CAP (cycloplosphamide, adria-
mycin, cis-platinum), and {¢) CA (cyclopho-
sphamide, adoamycin). The total number of
observations involved in the analyses was 339, The
three treatinents were to be compared with respect o
their ability 1o achieve a CR or parial respomse
(PR}, There were I3 responsss out of 98
possibilities for teatment CAME. The treatment
CAP had a response proportion of 9 out of 113,
Thers wers 4 responses out of 128 for CA.

The thivd data sei, a icst set, consists of thres
treatmends, The three treatments were PA, which
hiad a response of 13 out of 20, TT with 12 out of 20
responses; and OM, which had Il out of 20
FESDONSES.

It is possible o do a pairwise comparison of three
proportions using Bayes® estimates. Confidence



regions for the posterior of the ratio of proportions is
obtainable. The confidence regions for the prior
parameters oo = Z and B = 3 are p1 / m
(1.4451.673)  pi/ p3 (1.565.2.027) and p3/ p2
{0.751,0.989). Using the sample data, the pairwise
comparison of threc proportions at o« = .1 yields
the following confidence regions for the posterior
of the ratic of proportions:

p1/p2  (0.899,1.260)
p1/ p3 (1.002,1.358)

p3/p2 (07031137

Hence p1/ p2 and p3/ p2 fall within (0.667.1.333)
and p]/ p3, falls within (0.636,1.364) . The
intervals {0.667, 1.333) and (0.636, 1.364) were
calculated using the formula for the equivalence
region endpoints, (1-.2/p,, 1+.2/p; ), [Hauck and
Anderson, 1986] where, p; is 12/ 20 and (1-2/p;,
1+.2/ps) where, psis 11/ 20, respectively. The p’s
are estimated. The endpeints of the confidence
regions from the cancer data does not fall within the
squivalence region, but the endpoints from the
sample data do.

7. CONCLUSIONS

In this paper, we considered the problem of
assessing  therapeutic  cquivalence of  theee
independent proportions.  Main areas of this
research relate to equivalence, the integration
involved in determining the posterior densities,
inference  comstructions, and the basis for
establishing a sufficient condition for equivalence.

This research assumed that all p’s  were
independent. It would be of great interest to
continue this research with the assumption that the
pi’s are not independent. One possible method to be
explored for this dependence assumption is the
concept expressed in the De Finetti theorem on
exchangeable variables. This theorem is as follows:
To every infinite sequence of exchangeable random
variables (X,) having wvalues in {01}, there
corresponds a probability distribution F concentrated
on {0.1] such that:

PLXi=1 . X=1X%u=0.. ,X0=0}

i
=[@* (-8 * F@g) forallnand0sk<n.
kel
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The distribution ¥ may be regarded as the prior for
the random parameter @ {Heath & Sudderth, 1976].
Exchangeable is defined as follows, The random
variables, X, . . ., X, are exchangeable if the n!
permutations, have the same n-dimensional
probability distribution [Freedman & Diaconis,
1980]. This paper presented some issues pertaining
to the integration involved in deriving the posterior
density for the

(v, .x.)

pairwise comparison of three proportions. There is
definitely a3 need for the development of more
methods that would be beneficial in handiing muit-
dimensional integration problems from a
compauiational perspective.

Moreover, the triple inlegral in this research
involved some beta functions with very inleresting
behavior. it would be of interest to direct attention
to the study of the behavior of such complicated
functions.

Calculations from this research were done using the
Monte Carlo method as well as basic infegration
principles. But other methods, such as the Gibbs
sampling algorithm, need more exploration

This research may appear o be directed toward the
Bayesian statistician; however, other areas of
statistics and mathematics would benefit greatly
from further research in this area. For example,
sven though the subject of power is inconsistent in
our Bayesian framework, it would be of interest ic
see how it would be applicable in this research.
Hauck and Anderson {1992} presented types of bio-
equivalence and some related considerations. Their
work has two main areas where further research is
needed.  First, statisticians need methods for
assessing population bioequivalence and methods
for individual bioequivalence. Second, there is a
need for more methods that are appropriate for
measures of bioavailability,

The encouragement of the development of other
statistical inference constructions should be included
because of the diversity of irials regarding the
manner in which data is collected and because the
amount of information available before, during, and
after the irial needs to be handled. In addition, other
statistical inference constructions to the problem of
equivalence bring new ideas that complement
previous ones and help others unfold,
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